
www.manaraa.com

Abstract—Systems running these days are huge, complex and

exist in many versions. Controlling these versions and tracking their

changes became a very hard process as some versions are created using

meaningless names or specifications. Many versions of a system are

created with no clear difference between them. This leads to

mismatching between a user’s request and the version he gets. In this

paper, we present a system versions meta-modeling approach that

produces versions based on system’s features. This model reduced the

number of steps needed to configure a release and gave each version

its unique specifications. This approach is applicable for systems that

use features in its specification.

Keywords—Features, Meta-modeling, Semantic Modeling, SPL,

VCS, Versioning.

I. INTRODUCTION

O legacy system may be used without modifying,

changing, updating or replacing some part of it. Tracking

these changes requires system to control them and enable

storing and retrieving past versions [1]. Version control systems

(VCSs) [1]-[5] is the best approach to guarantee system

versioning consistency; since it provides user feedbacks and

work history for any development or change. Without VCSs,

the control of systems versioning and development is very hard

process and errors prone. From the very beginning of version

control systems the developers determine the relations between

current versions and the new ones created [6].

VCSs main goals are to support system developers to work

concurrently, insuring that their changes are consistent with

each other and finally, to store any changes in a history archive

[7]. These systems can be classified based on the working

techniques [1]-[4], [7]-[9] into two types: Concurrent

Versioning Control Systems (CVCSs) and Centralized

Versioning Control Systems (CVCSs).

Nowadays, systems became more complicated and forked.

Several versions with several descriptions and details included

in each one. For firms, in order to present a new version for their

product, they build the new name based on the latest version

name for the product [9]. Like V1.3.1, V1.3.2. For end user,

having a lot of versions names and numbers makes the selection

for a suitable version a very hard and confused process[10].

Which version to choose? Which features does this version

include? What are the relations between the versions? And

many other questions.

Ola A. Younis is a lecturer of computer science working with the Bio-

inspired Systems Research Laboratory, Philadelphia University, Amman,

Jordan, (e-mail: oyounis@philadelphia.edu.jo).

Laskey in his work [11] reported that version identifier

(number or name) should be interpretable to reflect some of

version’s main features and structure. Version’s identifier

interpretation include understanding the functionality and use

for each version in order to increase its usability [11]. Another

challenge, reported in [10], is the vibration effect of change. To

approve any new change or development for the product, the

developer should schedule the change process to guarantee

system consistency during its development [10]. Several other

challenges were reported in [1], [2], [4], [7], [10], [11].

This paper deals with the following challenges: (1) Several

version identifiers for each product without a clear

methodology for identifier building, (2) lack of version’s

identifier interpretations, and (3) lack of change schedule to

guarantee system consistency during the version configuration.

Enterprise systems in complex organizations support large

number of different components and are composed of multiple

units and variant areas of interests; hence, these systems have

to control all processes, reports, and versions configuration.

Thus, each unit may have several possible values to cover. The

sources for these values are different: domain analysis,

stockholders’ needs, system evolution and so many other

sources [12]. The ability of a system to be generalized,

specialized or customized to perform special needs is the base

for new versions to be created based on system’s main features

[12].

One way to deal with system’s units and components and

identifying them is the use of features that are defined for the

whole system [13]. System features are defined in a feature

diagram showing the parent feature and its children using

relations like OR, AND, INCLUDE, EXCLUDE, and many

other relations [8], [12], [13].

Researchers presented feature modeling in three approaches:

Graph notations based, Text notations based, and Mixing graph

and text based approaches [12]. These approaches are classified

based on the technique used to capture system’s main features

and functionalities. Each approach has its strength and

weakness points.

Feature modeling used to describe system’s common and

variable components [12]. Common features present the

constant behavior for system components. while variable

features present the behaviors that change due to problem

context and use the optional features to present it [8], [12], [13].

Using feature modeling increase system reusability and

Prof. Said Ghoul is the leader of the Bio-inspired Systems Research

Laboratory, Philadelphia University, Amman, Jordan, (e-mail:

sghoul@philadelphia.edu.jo).

Ola A. Younis, Said Ghoul

Systems Versioning: A Features-Based Meta-

modeling Approach

N

www.manaraa.com

efficiency [12], since it shows the main components in a feature

hierarchy and enable the developer to reuse them [13]. This will

enhance the configuration process and make it easier than

choosing components individually without specifying the

relation between them [12], [13]. Others benefit for using

feature modeling is its contribution in system specialization

[13], synchronization between modeling and configuration [2],

[5], [8], [12], its powerful semantics [12], [13] and many other

benefits.

Several approaches presented the versioning concepts based

on system’s features. Some of these approaches focused on the

development phase for the system, while others focused on the

configuration and versioning concepts. CLAFER model [14]

reported a new way for mixing the structural components (class

model) with the conceptual components (feature model) of the

system. This mixing was done based on constraints and

inheritance concepts. Feature concepts were presented as a

collection of type definitions and features. CLAFER had two

main problems. The first one is that CLAFER did not define the

connections between multiple features. These connections are

very important to insure consistency during the mixing. The

second problem is the weak representation of features’ possible

values that may be used in the feature model.

In the work presented by Gunther and Sunkle [15], a new

creative programming language called RBFEATURES was

presented. This language was built on top of dynamic

programming language (ruby). RBFEATURES faced three

main problems. Firstly, the classification for the used features

was missing. Secondly, the relationships between the features

were not specified. And finally, tracking version process was

very hard, since the version is defined based on configuration

only and not on features.

An Object-Oriented feature model that combines feature

models’ concepts with object-oriented concepts was presented

by Sarinho and Apolinario in [16]. They proposed a new object-

oriented feature model (OOFM) that captures both the feature

model and feature modeling package. The problem with model

reported in [16] is that it did not separate between feature and

object model, which leads to a complex system.

Based on the weaknesses mentioned above, this paper

proposes, some enhancements to the actual state of the research

in this domain: (1) A features-based meta-model for versions

configuration. (2) A Classification of the features used in

building any system versioning model. (3) A combination of

versioning and features concepts to build versions based on

user-defined features. And (4) A semantics is given to each

version based on the features it includes. The proposed meta-

model supports the above two first versioning challenges

targeted by this papers.

This paper is organized as follows: Section II presents a

versioning feature-based meta-model approach introducing

some enhancements. These enhancements are evaluated in

section III. Section IV presents a conclusion and perspectives

of this work.

II. A VERSIONING FEATURES-BASED META-MODEL APPROACH

This section presents a version features-based meta-model, a

configuration features-based model, and a versioning features-

based approach with an example, the “Set” component, to

simplify the idea. A Set is a variable class, having several model

versions such as: Static stack, static queue, dynamic stack and

dynamic queue. In the following, some significant parts of this

example are presented. The complete case study is presented in

[12].

A. A Version Features-Based Meta-Model

The proposed versioning model includes a features-based

meta-model and an asset meta-model. The versioning meta-

model is composed by four meta-features as shown in Fig. 1.

Fig. 1 Meta-features Model

These meta-features are:

 Feature Types: This meta-feature captures all features and

their possible values in the system. These features include

characteristics and relations.

Ex: Set.Behavior={static,dynamic};

Set.Scope ={shared, separated};

This example shows that the possible values for Behavior

feature are either static or dynamic. And the possible values for

Scope feature are either shared or separated.

 Control Features: This meta-feature captures the

relationships between all system’s features. These relations

insure versions consistency during automatic system

configuration generation from components versions.

Ex: Beh.static <excludes> Beh.dynamic;

Beh.dynamic <imply> datastr.dynamic

This example shows that the static behavior excludes the

dynamic behavior. And the dynamic behavior implies a

dynamic data structure. This means that for any version in “Set”

example, you can’t have dynamic and static behavior at the

same time. And if you choose a dynamic behavior, your data

structure must be dynamic.

 Global Features: This meta-feature captures the common

(shared) features between all system components versions.

Ex: Set.Form={ch,con}; Set.View={ll,cl};

This example shows that the default values for the form

feature are chain and continuas. And the default values for the

view feature are linked list and closed list. This means that for

each version of “Set” example, the version’s view is either LL

or CL. And the version’s form is either Ch or Con.

 Configuration Features: This meta-feature captures each

configuration (release) specification.

Ex: Features Configuration

{Name: S_stack

view.cl<require> state.correct;

<reject> scope.shared; }

This example shows the configuration process for static

www.manaraa.com

stack. In this configuration, we insure that the view must be cl

and the state is correct. This configuration rejects the shared

scope. Other features are automatically added according to the

relations between “Set” features.

The connections between these meta-features are described

in Fig. 2.

Fig. 2 Meta-features connections

The Asset meta-model is composed by class interfaces and

their implemented attributes, methods and implementations that

present the final and real component that will be provided to the

end user as a new version of the system (Fig. 3).

Fig. 3 Assets Meta-model

B. Configuration Features-Based Model

After instantiating, for a system, the two version features-

based meta-models described above, the configuration process

can be enabled to create software releases based on system’s

features. For best understanding of the configuration process,

we present the configuration model in Figure 4.

The configuration starts by defining features meta-model that

was described in Figure 1. Then, and instance of this meta-

model is created to produce features model that specifies the

Features types, Control, Global features and Configuration

features. This step creates only the structure of these features

and do not specify any real values.

Fig. 4 Configuration features-based model

Another model is created after the features meta-model. This

model is the assets meta-model that was reported in figure 3.

After defining all features and relations for the requested

version, the real configuration will start. Before starting

configuring a new version, a request sent to versions repository

searching for a version with specifications defined by features

model. If the requested version was available, the user can take

a copy (release) of that version. If not, a new configuration

process will start.

Configuration generation (version instantiation) takes the

Configuration features (that were defined in the previous step)

with the assets meta-model to creates assets model. This model

defines version’s interfaces and implementations and creates

code for these implementations. This means specifying a real

values foe all features, relations interfaces and

implementations, which produce (as a result) a new version for

the system based on user’s pre-defined features. Next, we add

the new derivative version to versions repository for future use.

C. Features- Based Framework

In this section, we present an approach that captures the

configuration steps based on pre-defined features. This

approach can be applied to any type of feature-based systems.

Asset

www.manaraa.com

Firstly, let us define some used concepts:

 Version specifications: this term refers to the user pre-

defined specifications for requested version. The user

requests a version from the system, if there were a previous

version with same specifications (the version already has

been configured by the system), then the system replies

with a copy of that version.

 Requested Version: the version that user is requesting from

the system.

 Version configuration: the process of building new version

with user’s specifications.

 Versions repository: a directory that contains versions that

have been done previously by the system. A copy or pointer

for each version (including all its features, relations and

any other resources) is stored.

Fig. 5 presents a pseudo code model of the full approach for

any request from the users.

Fig. 5 Features-based framework

Based on this approach and features-based model presented

in the previous section, each version holds a meaningful

semantics based on the features it includes. This step will

enhance version systems and simplify the process of change

tracking and versions classifications.

III. EVALUATION AND PERSPECTIVES

In this section, we introduce the implementation issues of the

proposed approach, its application areas, and its technical

comparison with others relevant works.

A. Implementation Issues

Any environment that may use our model needs a strong

object-oriented and feature oriented programming languages.

All mentioned features have to be implemented in classes and

objects environment to be used later in each configuration

version.

Each configuration version is an object instantiation based

of the classes and relations between them that are defined

based on the features and their relations.

B. Application Area

The proposed approach supports software engineering,

reverse engineering, and reengineering tasks by adding the

features to its process and classifying them in a way that will

enhance versioning process.

Big systems that require VCSs, like operating systems,

enterprise systems, multi-agent systems and others may highly

take advantages by using this approach.

C. Comparisons With Similar Works

Since the presented approaches is a modeling technique for

the versioning process, its comparison with others relevant

works [3, 5, 8, 14, 15] will be based on specific versioning

criteria. The selected criteria are:

 Covered steps in software process. The proposed approach

and the work presented in [14], cover the design and

implementation phases. The works [3, 5] covered the

implementation step, while the work [15] covered only the

design phase.

 Mixing feature and versioning concepts. In the presented

work, mixing feature and versioning concepts was

achieved by extending versioning concepts with feature

concepts to produce features-based model. This step was

missed in [3, 5, 15]. Kacper et al. [14] presented two

separated models and concepts for versioning and features

models.

 Supporting approach. The proposed approach, supports

configuration’s methodology and a design pattern that is

applicable for any system to create versions based on pre-

defined features. But this step was not covered by any of

the presented researches. Configurations were carried out

individually without any formal way.
 Using reduced number of concepts and having a uniform

semantics. In the introduced approach, we reduced the

number of concepts that may be used in each configuration

process by classifying the features into global, control and

configuration ones and defining their syntax and semantics.

This step is very important in large systems where versions

number is very huge and configuration’s time is important.

This step was missed in [5, 14] and partially applied in [3,

15].

 Enhancing Software product Line (SPL) area. This step

has a nature relation with the previous one. SPLs will be

enhanced by features-based configuration model that has

been defined using strong syntax and semantics and using

reduced number of concepts to produce system versions.

V_Speci >> version specification

R_Vers >> Requested version

V_Config >> version configuration

V_Repo >> versions repository.

V_Speci null;

R_Vers null;

V_Config null;

For each user_requirements for any version

V_Speci {feat1, feat2, ….,featn};

 Create Features Meta-Model;

 Create Assets Meta-Model;

 Create Features Model;

Check V_Repo

If(Version(V_Speci)) exists Then

R_VersCopy of Version(V_Speci).Config;

Else

 Check feat.control;

 V_Configfeat.control. derivative;

 End If

 For each feat in V_Speci

 Check feat.global;

 V_Configfeat.global. derivative;

 End

 Foreach feat in V_Speci

 Check feat.derivative.control;

 V_Configfeat.derivative.control. derivative;

 End

End

www.manaraa.com

IV. CONCLUSIONS

In this paper, we presented a features-based model and

approach for the configuration process. We classified the

features that may be used in any system based on their

functionalities into Global, Control, and configuration features.

These features capture all possible versions based on the

relations and derivative features that result from combining

them together in system version or release. The process of

configuring new versions, based on user-defined features

(specifications), is automatically carried out.

REFERENCES

[1] Ba, M.L., A. Talel, and S. Pierre, Uncertain version control in open
collaborative editing of tree-structured documents, in Proceedings of the
2013 ACM symposium on Document engineering. 2013, ACM: Florence,
Italy.

[2] Bauml, J. and P. Brada. Automated Versioning in OSGi: A Mechanism
for Component Software Consistency Guarantee. in Software
Engineering and Advanced Applications, 2009. SEAA '09. 35th
Euromicro Conference on. 2009.

[3] Gomez, V.U., S. Ducasse, and T. D'Hondt, Visually characterizing source
code changes. Science of Computer Programming, 2013(0).

[4] Jiang, Z., How to give away software with successive versions. Decision
Support Systems, 2010. 49(4): p. 430-441.

[5] Lindkvist, C., A. Stasis, and J. Whyte, Configuration Management in
Complex Engineering Projects. Procedia CIRP, 2013. 11(0): p. 173-176.

[6] Rochkind, M.J., The source code control system. IEEE Transactions on
Software Engineering, 1975. 1(4): p. 364–370.

[7] Sink, E., Version Control by Example, ed. B. Finney. July 2011: Pyrenean
Gold Press.

[8] Buchmann, T., A. Dotor, and B. Westfechtel, MOD2-SCM: A model-
driven product line for software configuration management systems.
Information and Software Technology, 2013. 55(3): p. 630-650.

[9] Jannik, L., et al., Supporting simultaneous versions for software evolution
assessment. Science of computer programming 2011. 76(12): p. 1177-
1193.

[10] Marc Novakouski, G.L., William A,nderson and Jeff Davenpor, Best
Practices for Artifact Versioning in Service-Oriented Systems in SEI
Administrative Agent T. Research, and System Solutions Program,
Editor. 2012, Carnegie Mellon University.

[11] Laskey, K. Considerations for SOA Versioning. in Enterprise Distributed
Object Computing Conference Workshops, 2008 12th. 2008.

[12] Ola Younis, S. Ghoul, and M. Al Omari, Systems variability modeling: A
Textual model mixing class and feature concepts. International Journal of
Computer Science & Information Technology (IJCSIT), 2013. 5(5): p.
127-139.

[13] Don, B., Feature models, grammars, and propositional formulas, in
Proceedings of the 9th international conference on Software Product
Lines. 2005, Springer-Verlag: Rennes, France.

[14] Kacper, B., Clafer: a unifed language for class and feature modeling.
2010.

[15] Sunkle, S.G.S., rbFeatures: Feature-oriented programming with Ruby.
Science of Computer Programming, 2012. 77: p. 152-173.

[16] V. T Sarinho, A.L.A.E.S.d.A., OOFM - A feature modeling approach to
implement MPLs and DSPLs, in EEE 13th International Conference on
Information Reuse and Integration (IRI). 2012, IEEE.

